▎ 摘 要
The transport properties of zigzag graphene nanoribbons (ZGNRs) with different patterns of vacancies are investigated by using the density functional theory and nonequilibrium Green's function (NEGF) formalism. It is found that the transport properties vary with lattice type vacancy. For two vacancies, A-B type vacancies have the most significant influence on the conductance of ZGNRs, while A-A type vacancies have the most slightly influence on the conductance. More importantly, the pattern of vacancies has enormous influence on electron transport around the Femi energy. As hexagon carbons are removed, the ZGNRs will be modified, changing from metallic to semiconducting. This lays the theoretical foundation for tuning the electron properties of ZGNRs by patterning vacancies.