• 文献标题:   Chemodiversity of soil organic matters determines biodegradation of polychlorinated biphenyls by a graphene oxide-assisted bacterial agent
  • 文献类型:   Article
  • 作  者:   LI R, TENG Y, SUN Y, XU YF, WANG ZP, WANG X, HU WB, REN WJ, ZHAO L, LUO YM
  • 作者关键词:   graphene oxide assisted bacterial agent, soil organic matter chemodiversity, substrate selectivity, bioavailability, polychlorinated biphenyl
  • 出版物名称:   JOURNAL OF HAZARDOUS MATERIALS
  • ISSN:   0304-3894 EI 1873-3336
  • 通讯作者地址:  
  • 被引频次:   0
  • DOI:   10.1016/j.jhazmat.2023.131015 EA FEB 2023
  • 出版年:   2023

▎ 摘  要

A promising strategy for degrading persistent organic pollutants (POPs) in soil is amendment with nanomaterial-assisted functional bacteria. However, the influence of soil organic matter chemodiversity on the performance of nanomaterial-assisted bacterial agents remains unclear. Herein, different types of soil (Mollisol soil, MS; Ultisol soil, US; and Inceptisol soil, IS) were inoculated with a graphene oxide (GO)-assisted bacterial agent (Bra-dyrhizobium diazoefficiens USDA 110, B. diazoefficiens USDA 110) to investigate the association between soil organic matter chemodiversity and stimulation of polychlorinated biphenyl (PCB) degradation. Results indicated that the high-aromatic solid organic matter (SOM) inhibited PCB bioavailability, and lignin-dominant dissolved organic matter (DOM) with high biotransformation potential was a favored substrate for all PCB degraders, which led to no stimulation of PCB degradation in MS. Differently, high-aliphatic SOM in US and IS promoted PCB bioavailability. The high/low biotransformation potential of multiple DOM components (e.g., lignin, condensed hydrocarbon, unsaturated hydrocarbon, etc.) in US/IS further resulted to the enhanced PCB degra-dation by B. diazoefficiens USDA 110 (up to 30.34%) /all PCB degraders (up to 17.65%), respectively. Overall, the category and biotransformation potential of DOM components and the aromaticity of SOM collaboratively determine the stimulation of GO-assisted bacterial agent on PCB degradation.