• 文献标题:   Observation of a giant two-dimensional band-piezoelectric effect on biaxial-strained graphene
  • 文献类型:   Article
  • 作  者:   WANG XM, TIAN H, XIE WG, SHU Y, MI WT, MOHAMMAD MA, XIE QY, YANG Y, XU JB, REN TL
  • 作者关键词:  
  • 出版物名称:   NPG ASIA MATERIALS
  • ISSN:   1884-4049 EI 1884-4057
  • 通讯作者地址:   Tsinghua Univ
  • 被引频次:   21
  • DOI:   10.1038/am.2014.124
  • 出版年:   2015

▎ 摘  要

Piezoelectric materials used in the development of nanoscale mechanical sensors, actuators and energy harvesters have received much attention. More recently, devices made of graphene are of particular interest because of graphene's intriguing electronic and mechanical properties. Intrinsic graphene has long been considered devoid of the piezoelectric effect, although flexoelectricity has been exploited to demonstrate piezoelectricity in functionalized graphene and graphene nanoribbons. The perceived lack of this property has restricted graphene's use in nanoelectromechanical systems (NEMS) for electromechanical coupling purposes. Here an unprecedented two-dimensional (2D) piezoelectric effect on a strained/unstrained graphene junction is reported. In stark contrast to the bulk piezoelectric effect that results from the occurrence of electric dipole moments in solids, the 2D piezoelectric effect arises from the charge transfer along a work function gradient introduced by the biaxial-strain-engineered band structure. The observed effect, termed the band-piezoelectric effect, exhibits an enormous magnitude due to the ultrathin structure of graphene. On the basis of the band-piezoelectric effect, a graphene nanogenerator and a pressure gauge were fabricated. The results not only provide a versatile NEMS platform for sensing, actuating and energy harvesting, but also pave the way for efficiently modulating graphene via strain engineering.