• 文献标题:   3D Foam Strutted Graphene Carbon Nitride with Highly Stable Optoelectronic Properties
  • 文献类型:   Article
  • 作  者:   GUO QY, ZHANG YH, ZHANG HS, LIU YJ, ZHAO YJ, QIU JR, DONG GP
  • 作者关键词:   foam structure, gc3n4, optoelectronic, photoluminescence
  • 出版物名称:   ADVANCED FUNCTIONAL MATERIALS
  • ISSN:   1616-301X EI 1616-3028
  • 通讯作者地址:   South China Univ Technol
  • 被引频次:   24
  • DOI:   10.1002/adfm.201703711
  • 出版年:   2017

▎ 摘  要

Controlled morphology modulation of graphene carbon nitride (g-C3N4) is successfully realized from bulk to 3D loose foam architecture via the blowing effect of a bubble, which can be controlled by heating rate. The loose foam network is comprised by spatially scaffolded few-atom-layer interconnected flakes with the large specific surface area, as supporters to prevent agglomeration and provide a pathway for electron/phonon transports. The photocatalytic performance of 3D foam strutted g-C3N4 toward RhB decomposition and hydrogen evolution is significantly enhanced with the morphology optimization while its excellent optoelectronic properties are maintained simultaneously. Herein, the ultrathin, mono-, and high-quality foam g-C3N4 interconnected flakes with controlled layer are facilely obtained through ultrasonic, thus overcoming the drawbacks of a traditional top-down approach, opening a wide horizon for diverse practical usages. Additionally, the layer control mechanism of 3D hierarchical structure has been explored by means of bubble growth kinetics analysis and the density functional theory calculations.