• 文献标题:   Chemical, surface, and thermal studies of mixed oxides cupric oxide (CuO), lanthanum oxide (La2O3), and graphene oxide for dye degradation from aqueous solution
  • 文献类型:   Article
  • 作  者:   ALMARRI MN, KHALAF MM, GOUDA M, HEAKAL FE, ELMUSHYAKHI A, ABOU TALEB MF, ABD ELLATEEF HM
  • 作者关键词:   cuo, dye, water treatment
  • 出版物名称:   JOURNAL OF MATERIALS RESEARCH TECHNOLOGYJMR T
  • ISSN:   2238-7854 EI 2214-0697
  • 通讯作者地址:  
  • 被引频次:   1
  • DOI:   10.1016/j.jmrt.2023.01.152 EA FEB 2023
  • 出版年:   2023

▎ 摘  要

Mixed oxy-compositions are lately used for water treatment that might be exploited as photo-catalyst, and adsorptive materials for the disposal of water pollutants. Cupric oxide (CuO), lanthanum oxide (La2O3), and graphene oxide (GO)-based nanocomposites show an interest in water treatment applications owing to the adsorptive feature of carbon-based nanoparticles (NPs), besides low band gap of metal oxides that boosts photo-catalytic process. CuO/La2O3/GO-based nanocomposites are prepared and tested for their thermal stability, and dye removal activity. The change in nanocomposites structure upon the incorporation of CuO and La2O3 into GO nanosheets is inspected via TEM micrographs showing a decline in lanthana rod length to be 200 nm on average. Additionally, the improved roughness structure and the compact grain size appear in SEM micrographs reports CuO grain size reduction reaching an average size of 250 nm. The roughness pa-rameters of CuO/La2O3/GO are extraordinarily heightened in which the supreme value of roughness average is 7.6 nm. Ternary nanocomposite exhibits a maximum value (85%) as a methylene blue (MB) dye removal. Based on these obtained results, the fabricated nano-composites are recommended for water treatment due to their enriched physicochemical and morphological features as well as the better thermal stability and exerted dye removal activity.