• 文献标题:   Preparation and characterization of multi stimuli-responsive photoluminescent nanocomposites of graphene quantum dots with hyperbranched polyethylenimine derivatives
  • 文献类型:   Article
  • 作  者:   LIU X, LIU HJ, CHENG F, CHEN Y
  • 作者关键词:  
  • 出版物名称:   NANOSCALE
  • ISSN:   2040-3364 EI 2040-3372
  • 通讯作者地址:   Tianjin Univ
  • 被引频次:   28
  • DOI:   10.1039/c4nr00739e
  • 出版年:   2014

▎ 摘  要

Oxidized graphene sheets (OGS) were treated with a hyperbranched polyethylenimine (PEI) under hydrothermal conditions to generate nanocomposites of graphene quantum dots (GQDs) functionalized with PEI (GQD-PEIs). The influence of the reaction temperature and the PEI/OGS feed ratio on the photoluminescence properties of the GQD-PEIs was studied. The obtained GQD-PEIs were characterized by TEM, dynamic light scattering, elemental analysis, FTIR, zeta potential measurements and H-1 NMR spectroscopy, from which their structural information was inferred. Subsequently, isobutyric amide (IBAm) groups were attached to the GQD-PEIs through the amidation reaction of isobutyric anhydride with the PEI moieties, which resulted in GQD-PEI-IBAm nanocomposites. GQD-PEI-IBAm was not only thermoresponsive, but also responded to other stimuli, including inorganic salts, pH, and loaded organic guests. The cloud point temperature (T-cp) of aqueous solutions of GQD-PEI-IBAm could be modulated through changing the number of IBAm units in GQD-PEI-IBAm, by varying the type and concentration of the inorganic salts and loaded organic guests, or by varying the pH. All the obtained GQD-PEI-IBAm nanocomposites were photoluminescent, and their maximum emission wavelengths were not influenced by outside stimuli. Their emission intensities were influenced a little or negligibly by pH, traditional salting-out anions (Cl- and SO42-), and the relatively polar aspirin guest. However, the traditional salting-in I- anion and the more hydrophobic 1-pyrenebutyric acid (PBA) guest could effectively quench their fluorescence. 2D NOESY H-1 NMR spectra verified that GQD-PEI-IBAm accommodated the relatively polar aspirin guest using the PEI-IBAm shell, but adsorbed the relatively hydrophobic PBA guest through the nanographene core. The release rate of the guest encapsulated by the thermoresponsive GQD is different below and above T-cp.