• 文献标题:   Control of electronic transport in graphene by electromagnetic dressing
  • 文献类型:   Article
  • 作  者:   KRISTINSSON K, KIBIS OV, MORINA S, SHELYKH IA
  • 作者关键词:  
  • 出版物名称:   SCIENTIFIC REPORTS
  • ISSN:   2045-2322
  • 通讯作者地址:   Nanyang Technol Univ
  • 被引频次:   42
  • DOI:   10.1038/srep20082
  • 出版年:   2016

▎ 摘  要

We demonstrated theoretically that the renormalization of the electron energy spectrum near the Dirac point of graphene by a strong high-frequency electromagnetic field (dressing field) drastically depends on polarization of the field. Namely, linear polarization results in an anisotropic gapless energy spectrum, whereas circular polarization leads to an isotropic gapped one. As a consequence, the stationary (dc) electronic transport in graphene strongly depends on parameters of the dressing field: A circularly polarized field monotonically decreases the isotropic conductivity of graphene, whereas a linearly polarized one results in both giant anisotropy of conductivity (which can reach thousands of percents) and the oscillating behavior of the conductivity as a function of the field intensity. Since the predicted phenomena can be observed in a graphene layer irradiated by a monochromatic electromagnetic wave, the elaborated theory opens a substantially new way to control electronic properties of graphene with light.