▎ 摘 要
Magnetic force microscopy (MFM) offers a unique insight into the nanoscopic scale domain structures of magnetic materials. However, MFM is generally regarded as a qualitative technique and, therefore, requires meticulous calibration of the magnetic scanning probe stray field (B-probe) for quantitative measurements. We present a straightforward calibration of B-probe using scanning gate microscopy on epitaxial graphene Hall sensor in conjunction with Kelvin probe force microscopy feedback loop to eliminate sample-probe parasitic electric field interactions. Using this technique, we determined B-probe similar to 70 mT and similar to 76 mT for probes with nominal magnetic moment similar to 1 x 10(-13) and > 3 x 10(-13) emu, respectively, at a probe-sample distance of 20 nm.