• 文献标题:   Surface-Induced in Situ Sonothermodynamically Controlled Functionalized Graphene Oxide for in Vitro Cytotoxicity and Antioxidant Evaluations
  • 文献类型:   Article
  • 作  者:   AVASHTHI G, MAKTEDAR SS, SINGH M
  • 作者关键词:  
  • 出版物名称:   ACS OMEGA
  • ISSN:   2470-1343
  • 通讯作者地址:   Cent Univ Gujarat
  • 被引频次:   2
  • DOI:   10.1021/acsomega.9b01939
  • 出版年:   2019

▎ 摘  要

Graphene oxide-based advanced functional materials offer an ultimate solution for wider biomedical applications. In situ thermodynamically ultrasound-assisted direct covalent functionalization of graphene oxide (GO) with sulfanilamide (SA) has synthesized f-(SA)GO. Raman spectroscopy, X-ray diffraction, high-resolution transmission electron microscopy, selected area electron diffraction pattern, scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) have analyzed the f-(SA)GO structure for functional activities, expressed through synergistic impact of heteroatomic domains (SIHAD). The TGA of GO and f-(SA)GO demonstrates their total weight losses of 82.0 and 61.1%, respectively. Enhanced thermal stability of f-(SA)GO infers an exothermic behavior obtained with DSC. The surface-induced in situ thermodynamically controlled nonspontaneous reaction for f-(SA)GO has facilitated calculations for activation energy (E-a) = - 2.65 X 10(3) kJ mol(-1) and Gibbs free energy (Delta G) = 8.3741 kJ mol(-1), energetics for biological activities with sulforhodamine B assay on MCF-7 and Vero cell lines and antioxidant potential by free radical scavenging activity with DPPH (2,2-diphenyl-1-picrylhydrazyl). Cell viabilities are >89.8% for Vero and >90.1% for MCF-7 with f-(SA)GO over 10 to 80 mu g mL(-1). Its cytocompatibility infers establishment of a new material. The morphological effect on MCF-7 and Vero cell lines confirm its structurally stable biocompatibility. The SIHAD of f-(SA)GO scavenges radical activity, and its heteroatomic structure causes valuable physiochemical activities. f-(SA)GO could emerge as an advanced functional biomaterial for structurally and thermally stable biocompatible nanocoatings.