▎ 摘 要
An atomistic, spring-based, non-linear finite element method is implemented in order to predict the non-linear mechanical behavior of graphene nanoribbons. According this method, appropriate non-linear springs are utilized to simulate each interatomic interaction. Their force-displacement curve follows the relation between the first differentiation of the potential energy of the corresponding interaction-bond deformation. The potential which corresponds to the bond angle variation is simulated by a torsional spring, while the bond stretching is simulated by a uniaxial compression/extension spring. The linear approximation, commonly made in the literature for the bond angle bending interaction, is not followed here and thus the overall non-linear response of the specific interaction is accurately introduced into the model. Following the proposed formulation, the tensile uniaxial stress-strain behavior for various graphene nanoribbons, of zigzag as well as armchair orientation, arise. The results demonstrate that the linear and non-linear mechanical properties are strongly dependent on the structure as well as on the size of the graphene strip tested. (C) 2011 Elsevier B.V. All rights reserved.