▎ 摘 要
We propose an electrically tunable absorber based on epsilonnear- zero (ENZ) effect of graphene embedded in a nanocavity, which is composed of metal grating and substrate. Due to strong surface-normal electric field confined in ENZ graphene in the proposed structure, greatly enhanced light absorption (similar to 80%) is achieved in an ultrathin graphene monolayer. By electrically controlling the Fermi-level of graphene, a sharp peak absorption wavelength is tuned over a wide range. The proposed device can work as an optical modulator or a tunable absorption filter, which has a unique feature of incident angle insensitiveness owing to the ENZ effect and magnetic dipole resonance. Moreover, existence of a significantly dominant electric field and its uniformity make the device performance independent of the position of the graphene layer in the nanocavity, which provides great fabrication tolerance. (C) 2015 Optical Society of America