▎ 摘 要
Graphene nanoribbons are prone to in-plane bending even when supported on flat substrates. However, the amount of bending that ribbons can stably withstand remains poorly known. Here, by using molecular dynamics simulations, we study the stability limits of 0.5-1.9-nm-wide armchair and zigzag graphene nanoribbons subject to bending. We observe that the limits for maximum stable curvatures are below similar to 10 deg/nm in case the bending is externally forced and the limit is caused by buckling instability. Furthermore, it turns out that the limits for maximum stable curvatures are also below similar to 10 deg/nm in case the bending is not forced and the limit arises only from the corrugated potential-energy landscape due to the substrate. Both of the stability limits lower rapidly when ribbons widen. These results agree with recent experiments and can be understood by means of transparent elasticity models.