• 文献标题:   Stability, electronic and magnetic properties of embedded triangular graphene nanoflakes
  • 文献类型:   Article
  • 作  者:   DAI QQ, ZHU YF, JIANG Q
  • 作者关键词:  
  • 出版物名称:   PHYSICAL CHEMISTRY CHEMICAL PHYSICS
  • ISSN:   1463-9076
  • 通讯作者地址:   Jilin Univ
  • 被引频次:   12
  • DOI:   10.1039/c1cp22866h
  • 出版年:   2012

▎ 摘  要

Stability, electronic and magnetic properties of triangular graphene nanoflakes embedded in graphane (graphane-embedded TGNFs) are investigated by density functional theory. It is found that the interface between the embedded TGNF and graphane is stable since the diffusion of H atoms from the graphane region to the embedded TGNF is energetically unfavorable with high energy barriers. The electronic and magnetic properties of the system completely depend on the embedded TGNF. The band gaps of graphane-embedded ATGNFs (armchair-edged TGNFs) arise due to the quantum confinement, while the special characteristics of nonbonding states of graphane-embedded ZTGNFs (zigzag-edged TGNFs) play an important role in their electronic properties. As the edge sizes increase, the differences of band gaps between graphane-embedded TGNFs and the isolated ones decrease. Furthermore, owing to the partially paired p(z) orbitals of edge C atoms, graphane-embedded ZTGNFs exhibit a ferrimagnetic ground state with size-dependant total spin being consistent with Lieb's theorem. Our work provides a possible way to obtain TGNFs without physical cutting.