▎ 摘 要
Group-V elemental monolayers were recently predicted to exhibit exotic physical properties such as nontrivial topological properties, or a quantum anomalous Hall effect, which would make them very suitable for applications in next generation electronic devices. The free-standing group-V monolayer materials usually have a buckled honeycomb form, in contrast with the flat graphene monolayer. Here, we report epitaxial growth of atomically thin flat honeycomb monolayer of group-V element antimony on a Ag(111) substrate. Combined study of experiments and theoretical calculations verify the formation of a uniform and single-crystalline antimonene monolayer without atomic wrinkles, as a new honeycomb analogue of graphene monolayer. Directional bonding between adjacent Sb atoms and weak antimonene-substrate interaction are confirmed. The realization and investigation of flat antimonene honeycombs extends the scope of two-dimensional atomically-thick structures and provides a promising way to tune topological properties for future technological applications.