▎ 摘 要
Using scanning tunneling microscopy with Fe-coated W tips and first-principles calculations, we show that the interface of epitaxial graphene/SiC(0001) is a warped graphene layer with hexagon-pentagon-heptagon (H-5,H-6,H-7) defects that break the honeycomb symmetry, thereby inducing a gap and states below E-F near the K point. Although the next graphene layer assumes the perfect honeycomb lattice, its interaction with the warped layer modifies the dispersion about the Dirac point. These results explain recent angle-resolved photoemission and carbon core-level shift data and solve the long-standing problem of the interfacial structure of epitaxial graphene on SiC(0001).