▎ 摘 要
The combination of different properties being manipulated on nanomaterials is one of the challenges in nanotechnology research. In particular, the possibility to tailor the electronic and chemical properties offers promising possibilities for the design of functional nanostructures. Herein, we report an approach that permits control of these properties on the basis of electrooxidative lithography to structure reduced graphene oxide functionalized with a self-assembled monolayer of n-octadecyltrichlorosilane. The electrochemical oxidation process first induces the formation of polar acid groups on the mono-layer, which can be used to covalently bind nanoparticles and molecules and, secondly, also allows the reoxidation of the underlying reduced graphene oxide. As such, the chemical signature as well as the electronic properties of the substrate can be tailored on the micro-and nanometer scale. Details on the oxidation of the monolayer as well as thorough characterization of the electronic properties will be presented. Finally, the approach is used to demonstrate the fabrication of a sensitive glucose sensor device.