• 文献标题:   Temperature-dependent electrical resistivity of macroscopic graphene nanoplatelet strips
  • 文献类型:   Article
  • 作  者:   SIBILIA S, BERTOCCHI F, CHIODINI S, CRISTIANO F, FERRIGNO L, GIOVINCO G, MAFFUCCI A
  • 作者关键词:   graphene nanoplatelet, electrical resistivity, electrothermal modeling, ntc material
  • 出版物名称:   NANOTECHNOLOGY
  • ISSN:   0957-4484 EI 1361-6528
  • 通讯作者地址:  
  • 被引频次:   9
  • DOI:   10.1088/1361-6528/abef95
  • 出版年:   2021

▎ 摘  要

This paper studies the temperature dependence of the electrical resistivity of low-cost commercial graphene-based strips, made from a mixture of epoxy and graphene nanoplatelets. An equivalent homogenous resistivity model is derived from the joint use of experimental data and simulation results obtained by means of a full three-dimensional (3D) numerical electrothermal model. Three different types of macroscopic strips (with surface dimensions of cm(2)) are analyzed, differing in their percentage of graphene nanoplatelets. The experimental results show a linear trend of resistivity in a wide temperature range (-60 degrees C to +60 degrees C), and a negative temperature coefficient . The derived analytical model of temperature-dependent resistivity follows the simple law commonly adopted for conventional conducting materials, such us copper. The model is then validated by using the graphene strips as heating elements by exploiting the Joule effect. These results suggest that such materials can be used as thermistors in sensing or heating applications.