▎ 摘 要
A green synthesis of Pt-on-Pd bimetallic nanodendrites supported on graphene (GPtPdNDs) with a Pd interior and a dendrite-like Pt exterior was achieved using a two-step preparation, mixing graphene and PdCl42- first, then adding PtCl42- and ethanol without any other solvent. The morphology, structure and composition of the thus-prepared GPtPdNDs were characterized by transmission electron microscopy (TEM), high resolution TEM, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. Because no halide ions (refer in particular to Br-, I-) or surfactant was involved in the synthesis, the prepared GPtPdNDs were directly modified onto a glassy carbon electrode and showed excellent electrocatalytic performance in methanol oxidation without any pretreatments. Moreover, with the special structure of PtPdNDs and the synergetic effects of Pt and Pd and the enhanced electron transfer by graphene, the GPtPdNDs composites exhibited higher electrocatalytic activity and better tolerance to Pt nanoparticles supported on graphene (GPtNPs) and Pt/C for methanol oxidation. (c) 2014 Elsevier Ltd. All rights reserved.