▎ 摘 要
In this study, we have designed a label free DNA biosensor based on a magnetic bar carbon paste electrode (MBCPE) modified with nanomaterial of Fe3O4/reduced graphene oxide (Fe3O4NP-RGO) as a composite and 1-pyrenebutyric acid-N- hydroxysuccinimide ester (PANHS) as a linker for detection of DNA sequences. Probe (BRCA1 5382 insC mutation detection) strands were immobilized on the MBCPE/Fe3O4-RGO/PANHS electrode for the exact incubation time. The characterization of the modified electrode was studied using different techniques such as scanning electron microscopy (SEM), infrared spectroscopy (IR), vibrating sample magnetometer (VSM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry methods. Some experimental parameters such as immobilization time of probe DNA, time and temperature of hybridization process were investigated. Under the optimum conditions, the immobilization of the probe and its hybridization with the target DNA (Complementary DNA) were tested. This DNA biosensor revealed a good linear relationship between Delta R-ct and logarithm of the complementary target DNA concentration ranging from 1.0 x 10(-18) mol L-1 to 1.0 x 10(-8) mol L-1 with a correlation coefficient of 0.9935 and a detection limit of 2.8 x 10(-18) mol L-1. In addition, the mentioned biosensor was satisfactorily applied for discriminating of complementary sequences from non-complementary sequences. The constructed biosensor (MBCPE/Fe3O4-RGO/PANHS/ssDNA) with high sensitivity, selectivity, stability, reproducibility and low cost can be used for detection of BRCAI 5382 insC mutation. (C) 2016 Elsevier B.V. All rights reserved.