• 文献标题:   Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor
  • 文献类型:   Article
  • 作  者:   LIU WW, YAN XB, LANG JW, PENG C, XUE QJ
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF MATERIALS CHEMISTRY
  • ISSN:   0959-9428 EI 1364-5501
  • 通讯作者地址:   Chinese Acad Sci
  • 被引频次:   220
  • DOI:   10.1039/c2jm32659k
  • 出版年:   2012

▎ 摘  要

There is currently a strong demand for energy storage devices which are cheap, light weight, flexible, and possess high power and energy densities to meet the various requirements of modern gadgets. Herein, we prepare a flexible and easily processed electrode via a simple "brush-coating and drying" process using everyday cotton cloth as the platform and a stable graphene oxide (GO) suspension as the ink. After such a simple manufacturing operation followed by annealing at 300 degrees C in argon atmosphere, the as-obtained graphene sheets (GNSs)-cotton cloth (CC) composite fabric exhibits good electrical conductivity, outstanding flexibility, and strong adhesion between GNSs and cotton fibers. Using this GNSs-CC composite fabric as the electrode material and pure CC as the separator, a home-made supercapacitor was fabricated. The supercapacitor shows the specific capacitance of 81.7 F g(-1) (two-electrode system) in aqueous electrolyte, which is one of the highest values for GNSs-based supercapacitors. Moreover, the supercapacitor also exhibits satisfactory capacitance in ionic-liquid/organic electrolyte. An all-fabric supercapacitor was also fabricated using pure CC as separator and GNSs-CC composite fabric as electrode and current collector. Such a conductive GNSs-CC composite fabric may provide new design opportunities for wearable electronics and energy storage applications.