▎ 摘 要
Graphene is a two-dimensional material with great potential for photodetection and light modulation applications owing to its high charge mobility. However, the light absorption of graphene in the near-infrared range is only 2.3%, limiting the sensitivity of graphene-based devices. In this study, we propose a graphene perfect absorber based on degenerate critical coupling comprising monolayer graphene and a hollow silicon Mie resonator array. In particular, monolayer graphene achieves perfect absorption by controlling the periods and holes of the Mie resonators. The proposed graphene perfect absorber can significantly improve the sensitivity of graphene-based devices. (c) 2023 Optica Publishing Group