▎ 摘 要
Iron sulfide (FeS) anodes are plagued by severe irreversibility and volume changes that limit cycle performances. Here, a synergistically coupled hybrid composite, nanoengineered iron sulfide/S-doped graphene aerogel, was developed as high-capacity anode material for Li/Na-ion half/full batteries. The rational coupling of in situ generated FeS nanocrystals and the S-doped rGO aerogel matrix boosted the electronic conductivity, Li+/Na+ diffusion kinetics, and accommodated the volume changes in FeS. This anode system exhibited excellent long-term cyclability retaining high reversible capacities of 422 (1100 cycles) and 382 mAh g(-1) (1600 cycles), respectively, for Li+ and Na+ storage at 5 A g(-1). Full batteries designed with this anode system exhibited 435 (FeS/srGOA||LiCoO2) and 455 mAh g(-1) (FeS/srGOA||Na0.64Co0.1Mn0.9O2). The proposed low-cost anode system is competent with the current Li-ion battery technology and extends its utility for Na+ storage.