▎ 摘 要
In this paper, graphene/magnetite composites with hierarchical Fe3O4 structures were synthesized via a one-step hydrothermal method. The size of Fe3O4 nanocrystals and nanocrystal clusters can easily be controlled by altering reaction time and the starting mixed solvent ratio, respectively. Raman measurements evidenced that graphene oxide was simultaneously reduced to graphene during the deposition of magnetite particles. The deposition of Fe3O4 nanocrystals and nanocrystal clusters impedes graphene to restore the graphite structure. The composites showed a high crystallinity of magnetite and a considerable saturation magnetization. Furthermore, the acrylate modified Fe3O4 makes the composites water-dispersible and can effectively load polyfluorene polyelectrolyte via electrostatic force. The high magnetism, excellent water dispersibility and strong photoluminescence make these composites ideal candidates for various important applications such as magnetic resonance imaging, bioseparation, bioimaging, and optical devices fabrication. (C) 2011 Elsevier B.V. All rights reserved.