• 文献标题:   Multifaceted Regulation of Potassium-Ion Channels by Graphene Quantum Dots
  • 文献类型:   Article
  • 作  者:   GU ZL, BAGGETTA AM, CHONG Y, PLANT LD, MENG XY, ZHOU RH
  • 作者关键词:   graphene quantum dot, potassium channel, kir3.2, kv1.2, k2p2, molecular dynamics simulation, electrophysiology
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:  
  • 被引频次:   3
  • DOI:   10.1021/acsami.1c01569 EA JUN 2021
  • 出版年:   2021

▎ 摘  要

Graphene quantum dots (GQDs) are emerging as a versatile nanomaterial with numerous proposed biomedical applications. Despite the explosion in potential applications, the molecular interactions between GQDs and complex biomolecular systems, including potassium-ion (K+) channels, remain largely unknown. Here, we use molecular dynamics (MD) simulations and electrophysiology to study the interactions between GQDs and three representative K+ channels, which participate in a variety of physiological processes and are closely related to many disease states. Using MD simulations, we observed that GQDs adopt distinct contact poses with each of the three structurally distinct K+ channels. Our electrophysiological characterization of the effects of GQDs on channel currents revealed that GQDs interact with the extracellular voltage-sensing domain (VSD) of a Kv1.2 channel, augmenting current by left-shifting the voltage dependence of channel activation. In contrast, GQDs form a "lid" cluster over the extracellular mouth of inward rectifier Kir3.2, blocking the channel pore and decreasing the current in a concentration-dependent manner. Meanwhile, GQDs accumulate on the extracellular "cap domain" of K2P2 channels and have no apparent impact on the K+ flux through the channel. These results reveal a surprising multifaceted regulation of K+ channels by GQDs, which might help de novo design of nanomaterial-based channel probe openers/inhibitors that can be used to further discern channel function.