• 文献标题:   Supercapacitors Based on Three-Dimensional Hierarchical Graphene Aerogels with Periodic Macropores
  • 文献类型:   Article
  • 作  者:   ZHU C, LIU TY, QIAN F, HAN TYJ, DUOSS EB, KUNTZ JD, SPADACCINI CM, WORSLEY MA, LI Y
  • 作者关键词:   graphene aerogel, periodic macropore, 3d printing supercapacitor
  • 出版物名称:   NANO LETTERS
  • ISSN:   1530-6984 EI 1530-6992
  • 通讯作者地址:   Univ Calif Santa Cruz
  • 被引频次:   224
  • DOI:   10.1021/acs.nanolett.5b04965
  • 出版年:   2016

▎ 摘  要

Graphene is an atomically thin, two-dimensional (2D) carbon material that offers a unique combination of low density, exceptional mechanical properties, thermal stability, large surface area, and excellent electrical conductivity. Recent progress has resulted in macro-assemblies of graphene, such as bulk graphene aerogels for a variety of applications. However, these three-dimensional (3D) graphenes exhibit physicochemical property attenuation compared to their 2D building blocks because of one-fold composition and tortuous, stochastic porous networks. These limitations can be offset by developing a graphene composite material with an engineered porous architecture. Here, we report the fabrication of 3D periodic graphene composite aerogel microlattices for supercapacitor applications, via a 3D printing technique known as direct-ink writing. The key factor in developing these novel aerogels is creating an extrudable graphene oxide-based composite ink and modifying the 3D printing method to accommodate aerogel processing. The 3D-printed graphene composite aerogel (3D-GCA) electrodes are lightweight, highly conductive, and exhibit excellent electrochemical properties. In particular, the supercapacitors using these 3D-GCA electrodes with thicknesses on the order of millimeters display exceptional capacitive retention (ca. 90% from 0.5 to 10 A. g(-1)) and power densities (>4 kW.kg(-1)) that equal or exceed those of reported devices made with electrodes 10-100 times thinner. This work provides an example of how 3D-printed materials, such as graphene aerogels, can significantly expand the design space for fabricating high-performance and fully integrable energy storage devices optimized for a broad range of applications.