▎ 摘 要
As important multifunctional materials, the organic-inorganic hybrids are expected to be widely used in many fields, such as biosensor, solar cell and heterogeneous catalysis. In this article, we assemble a magnetic hybrid consisting of konjac glucomannan (KGM), graphene oxide (GO) and ferroferric oxide (Fe3O4) via a co-precipitation method to anchor palladium nanoparticles. The resultant Pd/KGM-GO-Fe3O4 catalysts exhibit superior catalytic performance for the hydrolysis of ammonia borane. The corresponding turnover frequency (TOF) is as high as 40.1 mol(H2) mol(pd)(-1) min(-1) in addition to a low activation energy (E-a = 26.1 kJ mol(-1)). The high catalytic activity is still maintained in the 10th recycle run, demonstrating their outstanding reusability. In addition, the magnetism of Fe3O4 and the unique structure of the resultant catalysts achieve effective momentum transfer in an external magnetic field, endowing the easy separation of the catalysts from the reaction system with an external magnet. The results will facilitate the development of both H-2 generation and organic-inorganic hybrid-based materials. (C) 2019 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.