▎ 摘 要
To realize macroscopic utilization of the excellent properties of graphene, various forms of graphene assemblies have been investigated. Among them, the gel form assemblies show great advantages because of their shapeable and self-healable properties and facile and simple manufacturing processes. For the conventional gel-formed graphene assemblies, a relatively large content of binders including hydrophilic polymers, celluloses, or/and amorphous inorganic materials is necessary in achieving the gelation. However, these binders are electrically nonconductive and electrochemically inactive, which would weaken the favorable functionalities of the composite, and the potential advantages of graphene cannot be fully utilized. Herein, a binder-free silver nanowire (Ag-NW)/reduced graphene oxide (rGO) gel-like composite is designed and successfully fabricated by employing the ultralong Ag-NWs to enhance the hierarchical synergistic effects. The fabrication technique is highly efficient and repeatable, and the obtained composite is flexible, stretchable, and self-healable. Furthermore, the overall properties of the composite can be easily adjusted in a wide range by controlling the mass ratio between Ag-NW and rGO, which makes it multipurpose and suitable in different applications. Several demonstrations have been carried out, and some special performances including linear strain sensing range and rapid transformation from wet to dry state are found in this unique composite. This binder-free structure could also be expanded to other material systems, which may offer a valuable inspiration for the development of functional devices based on the nanocomposite.