▎ 摘 要
An analytical approach is proposed to study the postbuckling of circular cylindrical shells subject to axial compression and lateral pressure made of functionally graded graphene platelet-reinforced polymer composite (FG-GPL-RPC). The governing equations are obtained in the context of the classical Donnell shell theory by the von Karman nonlinear relations. Then, based on the Ritz energy method, an analytical solution approach is used to trace the nonlinear postbuckling path of the shell. The effects of several parameters such as the weight fraction of the graphene platelet (GPL), the geometrical properties, and distribution patterns of the GPL on the postbuckling characteristics of the FG-GPL-RPC shell are analyzed.