▎ 摘 要
The distributions of positive carbon cluster ions produced by laser ablation of graphene (G) and graphene oxide (GO) are found to be quite different. Under a typical experimental condition, narrow distributions of even-numbered clusters from C60+ to C162+ were observed for G, and broad distributions including even-numbered clusters from C100+ to C400+ and odd-numbered clusters from C189+ to C395+ were observed for GO. The threshold of laser energy for G is lower than that of GO. Further results of collision-activated dissociation mass spectrometry indicate that the cluster ions generated from G are structurally similar but are different with those generated from GO or nanodiamonds. It is proposed that the experimentally observed difference can be attributed to the different mechanisms behind the process. A top-down mechanism including both direct transformation of G to fullerene and fragmentation of large-sized fullerenes is suggested for the generation of carbon cluster cations in the process of laser ablation of G. For GO, the experimental results are close to those of nanodiamonds and other materials reported previously and can be explained by the generally accepted bottom-up mechanism. Copyright (c) 2012 John Wiley & Sons, Ltd.