• 文献标题:   Defective graphene nanosheets for drinking water purification: Adsorption mechanism, performance, and recovery
  • 文献类型:   Article
  • 作  者:   KHALIHA S, MARFORIO TD, KOVTUN A, MANTOVANI S, BIANCHI A, NAVACCHIA ML, ZAMBIANCHI M, BOCCHI L, BOULANGER N, IAKUNKOV A, CALVARESI M, TALYZIN AV, PALERMO V, MELUCCI M
  • 作者关键词:   graphene, adsorption, surface interaction, water treatment, emerging contaminant
  • 出版物名称:   FLATCHEM
  • ISSN:   2452-2627
  • 通讯作者地址:  
  • 被引频次:   15
  • DOI:   10.1016/j.flatc.2021.100283 EA SEP 2021
  • 出版年:   2021

▎ 摘  要

Defect-rich graphene oxide (dGO) was used as sorbent for organic contaminants of emerging concern in tap water, including drugs and dyes, and the performance compared to those of lower-defects graphene types. The role of holes and carbonyl- carboxylic groups on graphene nanosheets surface on the adsorption mechanism and efficiency was investigated. dGO showed enhanced adsorption capacity toward two fluoroquinolone antibiotics (ofloxacin, OFLOX, and ciprofloxacin, CIPRO) in tap water with a maximum capacity of 650 mg/g, compared to 204 mg/g for Hummers derived commercial GO (hGO) and 125 mg/g for less defected Brodie derived GO (bGO) for OFLOX. The role of defects on the selective adsorption of OFLOX was also modelled by MD simulations, highlighting a mechanism mainly driven by the shape complementarity between the graphene holes and the molecules. Adsorption isotherms revealed different adsorption model for dGO, with a Langmuir fitting for dGO and BET fitting for all the other investigated samples. The maximum adsorption capacity of dGO for OFLOX was about six times higher than that of Granular Activated Carbon (95 mg/g), the industrial adsorption standard technology. Finally, it was also demonstrated that dGO can be recovered from treated water by ultrafiltration, this preventing secondary contamination risks and enabling safe use of graphene nanosheets for water purification.