▎ 摘 要
Graphene/titanium carbide composites were synthesized by means of sol-gel infiltration and spark plasma sintering (SPS). The graphene used in this research was casted into a sponge-like shape, composed of a three-dimensional (3D) network of graphene sheets. The sol-gel infiltration synthesis method allowed the formation of nanostructured ceramics inside the porous structure of graphene networks, thus forming composites. The compositions and microstructures of the Ti-O-C composites changed with the amount of the polymerizable carbon source (i.e. furfuryl alcohol (FA)) in the solution. A high carbon ratio was required to maintain the structure of the graphene network, as the graphene sheets could become a carbon source to react with TiO2 resulting in a lamellar-shaped grain morphology. Samples after SPS showed some toughening effects, such as de-bonding, bridging and formation of microcracks. Vickers hardness, electrical resistivity and thermal conductivity were examined for the composites. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.