▎ 摘 要
The huge production and application of bisphenol A (BPA) and graphene oxide (GO) inevitably lead to their co presence in aquatic ecosystems, which might cause joint toxic effects to aquatic organisms. Herein, zebrafish larvae at 3 d post fertilization (dpf) were exposed to BPA, GO, and their mixtures until 7 dpf. GO was ingested and localized in the gut. 5000 mu g/L BPA alone induced distinct ultrastructure damage, which was alleviated by GO, indicating that GO reduced the developmental toxicity of BPA. The levels of endocrine-related genes and steroid hormones were all modulated to the greatest extent by 500 mu g/L BPA, suggesting that BPA exhibited a remarkable endocrine disruption effect. However, the responses of some of these genes were recovered by GO, indicating that GO also alleviated the BPA-induced endocrine disruption. The mRNA levels of five genes in the extracellular matrix-receptor interaction pathway, two in the oxidative phosphorylation pathway, 18 in the metabolic pathways, and five in the peroxisome proliferator-activated receptor signaling pathway were distinctly altered by 5000 mu g/L BPA, but most of them were recovered in the presence of GO. GO might relieve the BPAinduced developmental toxicity and endocrine disruption by recovering the genes related to the corresponding pathways.