▎ 摘 要
The rational design of nanozymes with superior activities is essential for improving bioassay performances. Herein, nitrogen and boron co-doped graphene nanoribbons (NB-GNRs) are prepared by a hydrothermal method using urea as the nitrogen source and boric acid as the boron source, respectively. The introduction of co-doped and edge structures provides high defects and active sites. The resultant NB-GNRs nanozymes show superior peroxidase-like activities to nitrogen-doped and boron-doped counterparts due to the synergistic effects. By taking advantage of their peroxidase-like activities, NB-GNRs are used for the first time to develop enzyme-linked immunosorbent assay for the detection of interleukin-6. The biosensors exhibit a high performance with a linear range from 0.001 ng/mL to 1000 ng/mL and a detection limit of 0.3 pg/mL. Due to their low cost and high stability, the proposed nanomaterials show great promise in biocatalysis, immunoassay development and environmental monitoring. (C) 2021 Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.