• 文献标题:   Solution-Processed Graphene/MnO2 Nanostructured Textiles for High-Performance Electrochemical Capacitors
  • 文献类型:   Article
  • 作  者:   YU GH, HU LB, VOSGUERITCHIAN M, WANG HL, XIE X, MCDONOUGH JR, CUI X, CUI Y, BAO ZN
  • 作者关键词:   electrochemical capacitor, textile, solution proces, graphene nanosheet, mno2
  • 出版物名称:   NANO LETTERS
  • ISSN:   1530-6984
  • 通讯作者地址:   Stanford Univ
  • 被引频次:   936
  • DOI:   10.1021/nl2013828
  • 出版年:   2011

▎ 摘  要

Large scale energy storage system with low cost, high power, and long cycle life is crucial for addressing the energy problem when connected with renewable energy production. To realize grid-scale applications of the energy storage devices, there remain several key issues including the development of low-cost, high-performance materials that are environmentally friendly and compatible with low-temperature and large-scale processing. In this report, we demonstrate that solution-exfoliated graphene nanosheets (similar to 5 nm thickness) can be conformably coated from solution on three-dimensional, porous textiles support structures for high loading of active electrode materials and to facilitate the access of electrolytes to those materials. With further controlled electrodeposition of pseudocapacitive MnO2 nanomaterials, the hybrid graphene/MnO2-based textile yields high-capacitance performance with specific capacitance up to 315 F/g achieved. More: over, we have successfully fabricated asymmetric electrochemical capacitors with graphene/MnO2-textile as the positive electrode and single-walled carbon nanotubes (SWNTs)-textile as the negative electrode in an aqueous Na2SO4 electrolyte solution. These devices exhibit promising characteristics with a maximum power density of 110 kW/kg, an energy density of 12.5 Wh/kg, and excellent cycling performance of similar to 95% capacitance retention over 5000 cycles. Such low-cost, high-performance energy textiles based on solution-processed graphene/MnO2 hierarchical nanostructures offer great promise in large-scale energy storage device applications.