▎ 摘 要
A nanocomposite of SnS2 nanoparticles with reduced graphene oxide (SnS2@RGO) had been successfully synthesized as a substitute conventional Pt counter electrode (CE) in a dye-sensitized solar cell (DSSC) system. The SnS2 nanoparticles were uniformly dispersed onto graphene sheets, which formed a nanosized composite system. The effectiveness of this nanocomposite exhibited remarkable electrocatalytic properties upon reducing the triiodide, owning to synergistic effects of SnS2 nanoparticles dispersed on graphene sheet and improved conductivity. Consequently, the DSSC equipped with SnS2@RGO nanocomposite CE achieved power conversion efficiency (PCE) of 7.12%, which was higher than those of SnS2 nanoparticles (5.58%) or graphene sheet alone (3.73%) as CEs and also comparable to the value (6.79%) obtained with pure Pt CE as a reference.