• 文献标题:   In Situ Engineering of Pd Nanosponge Armored with Graphene Dots Using Br- toward High-Performance and Stable Electrocatalyst for the Hydrogen Evolution Reaction
  • 文献类型:   Article
  • 作  者:   NGUYEN VT, HA H, NGUYEN NA, AN H, KIM HY, CHOI HS
  • 作者关键词:   pd nanosponge, carbon dot, graphene dot wrapping, hydrogen evolution reaction, longterm stability
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:   Chungnam Natl Univ
  • 被引频次:   4
  • DOI:   10.1021/acsami.9b13735
  • 出版年:   2020

▎ 摘  要

In this study, we report a facile synthetic pathway to three-dimensional (3D) Pd nanosponge-shaped networks wrapped by graphene dots (Pd@G-NSs), which show superior electrocatalytic activity toward the hydrogen evolution reaction (HER) and exhibited excellent long-term stability in acidic media. Pd@G-NSs were synthesized by simply mixing Pd precursors, reducing agent, carbon dots (Cdots), and Br- ion at 30 degrees C. Experimental results and density functional theory (DFT) calculations suggested that the Br- ions played an essential role in accelerating the exfoliation of Cdot, supplying graphene layers, which could wrap the nanosponge-shaped Pd and finally form Pd@G-NS. In the absence of the Br- ions, only aggregated Pd nanoparticles (NPs) were formed and randomly mixed with Cdots. The resultant Pd@G-NS exhibited a high electrochemically active surface area and accelerated charge transport characteristics, leading to its superior electrocatalytic activity toward the HER in acidic media. The HER overpotential of Pd@G-NS was 32 mV at 10 mA cm(-2), and the Tafel slope was 33 mV dec(-1). Furthermore, the unique Pd@G-NS catalyst showed long-term stability for over 3000 cycles in acidic media as well, owing to the protection of Pd nanosponges by graphene dot wrapping. The overall HER performance of the Pd@G-NS catalyst exceeded that of commercial Pt/C.