▎ 摘 要
A simple and efficient method for synthesizing complex graphene-inspired BNCO nanoflakes by plasma-enhanced hot filament chemical vapour deposition using B4C as a precursor and N-2/H-2 reactive gases is reported. The results of the field emission scanning electron microscopy, X-ray diffractometer, micro-Raman spectroscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy have evidenced that the BNCO nanostructures are composed of graphene-like hexagonal boron nitride nanoflakes with carbon and oxygen admixtures. The photoluminescence properties of the BNCO nanoflakes were studied in a Ramalog system using a He-Cd laser, and the results have demonstrated that the BNCO nanoflakes can generate strong green photoluminescence in the range of 515-569 nm, which was attributed to the aggregation of carbon atoms in the BNCO nanoflakes. The growth mechanism of the BNCO nanoflakes was also studied to show that the NH3+ ions generated in plasma play an important role in the formation of the BNCO nanoflakes. The results propose a novel and efficient method for the synthesis of BN-based nanomaterials using B4C precursors, and contribute to the design of the functional BN-based nanomaterials for various applications including optoelectronics, nanoelectronics, medical equipment, and wear-resistant materials for acceleration channels of electric propulsion thrusters.