• 文献标题:   Robust and Flexible Aramid Nanofiber/Graphene Layer-by-Layer Electrodes
  • 文献类型:   Article
  • 作  者:   KWON SR, ELINSKI MB, BATTEAS JD, LUTKENHAUS JL
  • 作者关键词:   aramid nanofiber, graphene, layerbylayer, supercapacitor, structural energy power
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244
  • 通讯作者地址:   Texas A M Univ
  • 被引频次:   22
  • DOI:   10.1021/acsami.7b03449
  • 出版年:   2017

▎ 摘  要

Aramid nanofibers (ANFs), or nanoscale Kevlar fibers, are of interest for their high mechanical performance and functional nanostructure. The dispersible nature of ANFs opens up processing opportunities for creating mechanically robust and flexible nanocomposites, particularly for energy and power applications. The challenge is to manipulate ANFs into an electrode structure that balances mechanical and electrochemical performance to yield a robust and flexible electrode. Here, ANFs and graphene oxide (GO) sheets are blended using layer-by-layer (LbL) assembly to achieve mechanically flexible supercapacitor electrodes. After reduction, the resulting electrodes exhibit an ANF-rich structure where ANFs act as a polymer matrix that interfacially interacts with reduced graphene oxide sheets. It is shown that ANF/GO deposition proceeds by hydrogen bonding and pi-pi interactions, leading to linear growth (1.2 nm/layer pairs) and a composition of 75 wt % ANFs and 25 wt % GO sheets. Chemical reduction leads to a high areal capacitance of 221 mu F/cm(2), corresponding to 78 F/cm(3). Nanomechanical testing shows that the electrodes have a modulus intermediate between those of the two native materials. No tracks or defects are observed upon flexing ANF/GO films 1000 times at a radius of 5 mm, whereas a GO control shows extensive cracking. These results demonstrate that electrodes containing ANFs and reduced GO sheets are promising for flexible, mechanically robust energy and power.