▎ 摘 要
Graphene nanoplates (GNS) were prepared from oxided graphite by using thiosemicarbazide (CH5N3S) as a reducing agent. The microstructures and morphologies of products were subsequently characterized by XRD, FE-SEM, AFM and UV-Vis adsorption spectra. The performances of super-capacitor were characterized using cyclic voltammetry and constant current charge-discharge tests. The experimental results indicated that the as-prepared GNS possessed fair crystalline state and admirable aqueous dispersibility. An electrode prepared from GNS exhibited a specific capacitance of 75 F/g at a current density of 500 mA/g in 3 mol/L KOH electrolyte. Moreover, the GNS showed excellent electrochemical cycle performance.