• 文献标题:   3-Carboxybenzoboroxole Functionalized Polyethylenimine Modified Magnetic Graphene Oxide Nanocomposites for Human Plasma Glycoproteins Enrichment under Physiological Conditions
  • 文献类型:   Article
  • 作  者:   WU Q, JIANG B, WENG YJ, LIU JX, LI SW, HU YC, YANG KG, LIANG Z, ZHANG LH, ZHANG YK
  • 作者关键词:  
  • 出版物名称:   ANALYTICAL CHEMISTRY
  • ISSN:   0003-2700 EI 1520-6882
  • 通讯作者地址:   Chinese Acad Sci
  • 被引频次:   14
  • DOI:   10.1021/acs.analchem.7b04451
  • 出版年:   2018

▎ 摘  要

Boronate affinity materials have been successfully used for the selective recognition of glycoproteins. However, by such materials, the large-scale glycoproteins enrichment from human plasma under physiological conditions is rarely reported. In this work, 3-carboxybenzoboroxole (CBX) functionalized polyethylenimine (PEI) modified magnetic graphene oxide nanocomposites were synthesized. Benefitting from the low pK(a) value of CBX (similar to 6.9) and PEI dendrimer-assisted multivalent binding, the Freundlich constant (K-F) for the adsorption of horseradish peroxidase (HRP) was 3.0-7.3 times higher than that obtained by previous work, displaying the high enrichment capacity. Moreover, PEI could improve the hydrophilicity of nanocomposites and reduce nonglycoprotein adsorption. Therefore, such nanocomposites were successfully applied to the analysis of human plasma glycoproteome under physiological conditions, and the identified glycoproteins number and recognition selectivity was increased when compared to the results obtained by previous boronic acid-functionalized particles (Sil@Poly(APBA-co-MBAAm)) under common alkaline condition (137 vs 78 and 67.8% vs 57.8%, respectively). In addition, thrombin (F2), an important plasma glycoprotein, labile under alkaline conditions, was specifically identified by our method, demonstrating the great promise of such nanocomposites in the deep-coverage glycoproteome analysis.