• 文献标题:   Effective degradation of tetracycline via recyclable free-standing three-dimensional copper-based graphene as a persulfate catalyst
  • 文献类型:   Article
  • 作  者:   ZHAO CQ, LIANG LY, SHI Q, XIA H, LI CF, MA JG
  • 作者关键词:   3drgocuxo, persulfate activation, tetracycline, degradation, active radical
  • 出版物名称:   ENVIRONMENTAL SCIENCE POLLUTION RESEARCH
  • ISSN:   0944-1344 EI 1614-7499
  • 通讯作者地址:  
  • 被引频次:   2
  • DOI:   10.1007/s11356-023-26407-5 EA MAR 2023
  • 出版年:   2023

▎ 摘  要

Water pollution by antibiotics is a serious and growing problem. Given this challenge, a free-standing three-dimensional (3D) reduced graphene oxide foam supported copper oxide nanoparticles (3D-rGO-CuxO) was synthesized using GO as a precursor and applied as an efficient persulfate activator for tetracycline (TC) degradation. The influences of CuxO mass, solution pH, persulfate dosage, and common anions on the TC degradation were investigated in detail. Analytical techniques indicated that the 3D-rGO-CuxO showed a cross-linking three-dimensional network structure, and CuxO particles with irregular shapes were uniformly loaded on graphene pore walls. The XPS and Auger spectra of Cu confirmed that Cu2O was the main component in solid copper compounds. The addition of CuxO was vitally important for the activation of the oxidation system, and the removal rate reached 98% with a CuxO load of 7:1. The pH showed little influence on the activation effect on TC degradation. For common anions, Cl- and CO32- had little influence on the system, while humic acid had a great inhibitory effect. The EPR test and quenching experiment revealed that the active substances in the oxidative degradation process mainly include SO4-, OH, O-1(2), and reactive Cu(III). Additionally, the 3D-rGO-CuxO material proved highly stable according to the replicated test results and was promising for the remediation of antibiotic-contaminated water.