▎ 摘 要
An integrated system based on nickel foam (Ni foam), titanium dioxide sol/graphene nanocomposite and lactate oxidase (LOx) has been successfully developed for the sensing of lactate. A TiO2/graphene nanocomposite was readily synthesized and coated on a 3D porous Ni foam electrode to develop a novel electrode in an electrochemical biosensor. The as-prepared nanocomposite and the modified Ni foam were characterized by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) to verify the well intercalation of graphene within TiO2 sol and successful coating of such nanocomposite on Ni foam surface, respectively. Comparing with an unmodified Ni foam, TiO2 sol/graphene modified Ni foam offered a drastic increase in current response signal (a 28-fold) toward H2O2 detection, suggesting a potential application of this system as a sensitive electrochemical sensor. Then, LOx was immobilized onto the modified electrode for lactate sensor via H2O2 detection. Interestingly, the combination between graphene and TiO2 sol enhanced both sensitivity and stability of this sensor. A wide linear range of 50 mu M to 10 mM with a detection limit of 19 mu M was obtained for lactate without interfering effect from ascorbic acid, dopamine, and glucose. This platform was sensitive enough for early diagnosis of severe sepsis and septic shock via the detection of concerned lactate level. Eventually, it was successfully applied to detection of lactate in a complex biological fluid.