• 文献标题:   Synthesis of ZnO quantum dot/graphene nanocomposites by atomic layer deposition with high lithium storage capacity
  • 文献类型:   Article
  • 作  者:   SUN X, ZHOU CG, XIE M, SUN HT, HU T, LU FY, SCOTT SM, GEORGE SM, LIAN J
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF MATERIALS CHEMISTRY A
  • ISSN:   2050-7488 EI 2050-7496
  • 通讯作者地址:   Rensselaer Polytech Inst
  • 被引频次:   84
  • DOI:   10.1039/c4ta00589a
  • 出版年:   2014

▎ 摘  要

Zinc oxide, as an inexpensive anode material, has attracted less attention than other metal oxides due to its poor cycling stability. A rational design of ZnO nanostructures with well-controlled particle sizes and microstructures is essential in order to improve their stability and performance as electrodes for lithium ion batteries (LIBs). Here, we demonstrate a simple approach via atomic layer deposition (ALD) to synthesize ZnO quantum dots (QDs) on graphene layers, in which the size of the ZnO QDs can be controlled from 2 to 7 nm by ALD cycles. A strong relationship between size and electrochemical performance is observed, in which smaller sized QDs on graphene display enhanced electrochemical performance. A high reversible specific capacity of 960 mA h g(-1) is achieved at a current density of 100 mA g(-1) for 2 nm ZnO QDs, approaching to the theoretical value of ZnO as the LIB anode. The greatly enhanced cycling stability and rate performance of the ALD ZnO QD/graphene composite electrode can be attributed to the well-maintained structural integrity without pulverization upon electrochemical charge/discharge for ZnO QDs with the grain size below a critical value.