• 文献标题:   Formation, Stabilities, and Electronic and Catalytic Performance of Platinum Catalyst Supported on Non-Metal-Doped Graphene
  • 文献类型:   Article
  • 作  者:   TANG YN, YANG ZX, DAI XQ, MA DW, FU ZM
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF PHYSICAL CHEMISTRY C
  • ISSN:   1932-7447 EI 1932-7455
  • 通讯作者地址:   Henan Normal Univ
  • 被引频次:   57
  • DOI:   10.1021/jp400202e
  • 出版年:   2013

▎ 摘  要

The geometry, electronic structure, and catalytic properties of Pt catalyst supported on the nonmetal doped-graphene (denoted as D-graphene, where D represents the B, Si, O and P dopant) substrates are investigated using the first-principles method. The nonmetal atoms (NA) have small adsorption energies and prefer to be adsorbed at the bridge site on the pristine graphene. In contrast, they prefer to be anchored at the vacancy site as dopants and form stable D-graphene. The NA dopants can modify the local surface curvature and the electronic properties of graphene and therefore regulate the chemical activity of the D-graphene, which can be used as support for catalysts. The highly stable Pt catalysts supported on the D-graphene substrates (Pt/D-graphene) exhibit good catalytic activity for CO oxidation. By comparing both the Langmuir-Hinshelwood (LH) and Eley-Rideal reaction mechanisms, the LH reaction as the starting state is energetically more favorable. Among the Pt/D-graphene systems studied, CO oxidation reactions are more prone to take place with lower energy barriers on the Pt/Si-graphene. The results provide valuable guidance on selecting dopants in graphene to fabricate carbon-based catalysts for CO oxidation, and validate the reactivity of single-atom catalyst for the designing the atomic-scale catalysts.