• 文献标题:   Full activation pattern mapping by simultaneous deep brain stimulation and fMRI with graphene fiber electrodes
  • 文献类型:   Article
  • 作  者:   ZHAO SY, LI G, TONG CJ, CHEN WJ, WANG PX, DAI JK, FU XF, XU Z, LIU XJ, LU LL, LIANG ZF, DUAN XJ
  • 作者关键词:  
  • 出版物名称:   NATURE COMMUNICATIONS
  • ISSN:   2041-1723
  • 通讯作者地址:   Peking Univ
  • 被引频次:   2
  • DOI:   10.1038/s41467-020-15570-9
  • 出版年:   2020

▎ 摘  要

Simultaneous deep brain stimulation (DBS) and functional magnetic resonance imaging (fMRI) constitutes a powerful tool for elucidating brain functional connectivity, and exploring neuromodulatory mechanisms of DBS therapies. Previous DBS-fMRI studies could not provide full activation pattern maps due to poor MRI compatibility of the DBS electrodes, which caused obstruction of large brain areas on MRI scans. Here, we fabricate graphene fiber (GF) electrodes with high charge-injection-capacity and little-to-no MRI artifact at 9.4T. DBS-fMRI with GF electrodes at the subthalamic nucleus (STN) in Parkinsonian rats reveal robust blood-oxygenation-level-dependent responses along the basal ganglia-thalamocortical network in a frequency-dependent manner, with responses from some regions not previously detectable. This full map indicates that STN-DBS modulates both motor and non-motor pathways, possibly through orthodromic and antidromic signal propagation. With the capability for full, unbiased activation pattern mapping, DBS-fMRI using GF electrodes can provide important insights into DBS therapeutic mechanisms in various neurological disorders. Combination of fMRI and deep brain stimulation (DBS) allows for large-scale mapping of brain responses to DBS. Here the authors develop highly MRI compatible graphene fiber electrodes for full brain activation pattern mapping under DBS in Parkinsonian rats.