▎ 摘 要
Organic electrochromic (EC) materials are generally known to be electrochemically unstable during the ion intercalation/deintercalation process. One effective method to stabilize them is incorporating graphene derivatives in the polymer matrix, thereby creating strong interaction between graphene derivatives and polymer. However, previous studies are limited to specific polymers and bulk-blended systems, such as mixing the polymer with graphene derivatives. In this study, we developed a polymer-graphene derivative complex with the chemical assistance of a surfactant (octadecylamine, ODA). Graphene oxide (GO) was introduced as a protective layer on the electrochromic poly(3-hexyl thiophene) (P3HT) films by the Langmuir-Schaefer method. The deposition of the GO-ODA protective layer with high coverage was confirmed by atomic force microscopy and high-resolution X-ray reflectivity. The strong interactions between GO-ODA and P3HT were examined with UV-vis spectrophotometry and X-ray photoelectron spectroscopy. Electrochemical and electrochromic investigations revealed that the GO-ODA layer greatly improved the long-term cyclability of the P3HT film. These findings imply that the GO-ODA complex can significantly stabilize the EC cycling, due to its strong interaction with the P3HT film.