• 文献标题:   Rapid In Situ Polymerization of Polyacrylonitrile/Graphene Oxide Nanocomposites as Precursors for High-Strength Carbon Nanofibers
  • 文献类型:   Article
  • 作  者:   ZHANG Y, ZHU B, CAI X, YUAN XM, ZHAO SY, YU JW, QIAO K, QIN RM
  • 作者关键词:   graphene oxide, carbon nanofiber, homogeneous dispersion, in situ polymerization, turbostratic domain, electrospinning
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:  
  • 被引频次:   12
  • DOI:   10.1021/acsami.1c02643 EA MAR 2021
  • 出版年:   2021

▎ 摘  要

Graphene oxide (GO) has been widely used as an additive of polyacrylonitrile (PAN)-based carbon nanofibers (CNFs) to optimize its crystal structure and improve the mechanical performances of nanofibers. However, the homogeneous dispersion of GO nanosheets among entangled PAN molecular chains is always challenging, and the poor dispersion of GO severely limits its positive effects on both the structure and performances of CNFs. Considering this issue, this paper provides for the first time an effective solution to achieve rapid and uniform introduction of GO in PAN-based nanofibers via in situ polymerization, and the optimization of the nanofiber structure by GO is systematically studied in three consecutive stages (polymerization, electrospinning, and carbonization) of the production process. During in situ polymerization, PAN is tightly attached on GO nanosheets to form PAN/GO nanocomposites, and this interaction is maintained throughout the spinning process. Not only the arrangement of PAN molecular chains but also the crystal size of the final turbostratic structure of CNFs is considerably improved by the interaction between PAN and GO. Besides, the direct proof that GO nanosheets promote the crystallization and orientation of the nanofiber matrix is presented. As a result, the tensile strength of CNFs is remarkably increased by 2.45 times with 0.5 wt % addition of GO. In summary, this paper provides a method for efficiently introducing nanoscale additives into PAN-based nanofibers and gives insights into the production of high-performance CNFs with the addition of GO.