▎ 摘 要
A nanocomposite composed of graphene oxide and magnetite (Fe3O4) was coated with the ionic liquid (IL) 1,3-didecyl-2-methylimidazolium chloride and used to capture and separate hemin from serum samples. The critical parameters affecting the extraction of analyte, such as pH, surfactant and adsorbent amounts, and desorption conditions were studied and optimized. Following magnetic separation and desorption with a 5:1 mixture of acetic acid and acetone, hemin (an iron porphyrin complex) was quantified by FAAS of iron. Under optimum conditions, the enrichment factor was 96. The calibration curve was linear in the 4.8 to 730 mu g L-1 concentration range, the limit of detection was 3.0 mu g L-1, and the relative standard deviations (RSDs) for single-sorbent repeatability and sorbent-to-sorbent reproducibility were less than 3.9 % and 10.2 % (n = 5), respectively. The adsorbent displayed adsorption capacity as high as 200 mg g(-1), indicating IL-coated Fe3O4/GO to be a good sorbent for the adsorption of hemin. The method was validated by determining serum hemin in the presence of a large excess (480-fold) of Fe3+ without considerable interference. The results compare well to those obtained with a commercial hemin assay kit. The results show that this method can be successfully applied to the enrichment and determination of hemin in acid digested serum samples of breast cancer patients.