• 文献标题:   The fracture toughness of graphene during the tearing process
  • 文献类型:   Article
  • 作  者:   WANG Y, LIU ZS
  • 作者关键词:   graphene, tearing, fracture toughnes, grain boundary
  • 出版物名称:   MODELLING SIMULATION IN MATERIALS SCIENCE ENGINEERING
  • ISSN:   0965-0393 EI 1361-651X
  • 通讯作者地址:   Xi An Jiao Tong Univ
  • 被引频次:   11
  • DOI:   10.1088/0965-0393/24/8/085002
  • 出版年:   2016

▎ 摘  要

The fracture toughness of single-crystal graphene and bi-crystal graphene with different misorientation angles is investigated by molecular dynamics simulation. We find that the fracture toughness fluctuates when a crack propagates across the grain boundary. It indicates that the grain boundary affects the fracture toughness during the fracture process. The affected region on the graphene is limited to a small zone around the grain boundary. However, for the complete tearing-failure case, fracture toughness of bi-crystal graphene is approximate to that of single-crystal graphene, which implies that the fracture toughness is not very sensitive to the grain boundary. For comparison, the tensile fracture simulations of the single-crystal graphene and bi-crystal graphene are carried out. The results show that the grain boundaries block the crack propagation and affect fracture toughness significantly in bi-crystal graphene under tensile force. Furthermore, we analyze the fracture of a single C-C bond at the crack tip of single-crystal graphene under tearing load from the atomic view. We find that the fracture toughness of the single C-C bond occupies about half of the fracture toughness for the complete failure of the total single-crystal graphene, and the other half energy distributes in the rest of the graphene.