▎ 摘 要
High quality, large grain size graphene on polycrystalline nickel film on two inch silicon wafers was successfully synthesized by the chemical vapor deposition (CVD) method. The polydimethylsiloxane (PDMS) stamping method was used for graphene transferring in this experiment. The graphene transferred onto Al2O3/ITO substrates was patterned into macroscopic dimension electrodes using conventional lithography followed by oxygen plasma etching. Experimental results show that this graphene can serve as transparent source and drain electrodes in high performance organic semiconductor nanoribbon organic field-effect transistors (OFETs), facilitating high hole injection efficiency due to the preferred work function match with the channel material: single crystalline copper phthalocyanine (CuPc) nanoribbons. The nanoribbons were grown on top of the patterned graphene via evaporate-deposition to form the FET device. The carrier mobility and on/off current ratio of such devices were measured to be as high as 0.36 cm(2)/(V s) and 10(4).